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Abstract
Electronic transport in a graphene-based ferromagnetic/normal/ferromagnetic junction is
investigated by means of the Landauer–Büttiker formalism and the nonequilibrium Green
function technique. For the zigzag edge case, the results show that the conductance is always
larger than e2/h for the parallel configuration of lead magnetizations, but for the antiparallel
configuration the conductance becomes zero because of the band-selective rule. Therefore, a
magnetoresistance (MR) plateau emerges with the value 100% when the Fermi energy is
located around the Dirac point. In addition, choosing narrower graphene ribbons can yield
wider 100% MR plateaus and the length change of the central graphene region does not affect
the 100% MR plateaus. Although the disorder will reduce the MR plateau, the plateau value can
still be kept about 50% even in a large disorder strength case. In addition, when the
magnetizations of the left and right leads have a relative angle, the conductance changes as a
cosine function of the angle. What is more, for the armchair edge case, the MR is usually small.
So, it is more favorable to fabricate a graphene-based spin valve device by using a zigzag edge
graphene ribbon.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Graphene, a two-dimensional single-layer crystal of carbon
atoms arrayed in a honeycomb lattice, is a novel and exciting
material [1]. The low energy excitation of graphene has a linear
dispersion relation, and the dynamics of the charge carriers
obeys a massless Dirac-like equation [2]. Because of the
unique band structures, graphene has many peculiar properties,
such as Hall plateaus occurring at half-integer multiples of
ge2/h with the spin and valley degeneracy g = 4, and
a conductivity at the zero magnetic field having a non-zero

minimal value [3]. For neutral graphene, the Fermi level is
located at the Dirac points, the corners of the hexagonal first
Brillouin zone. In experiment, a gate voltage can be used to
tune the Fermi level, which can then be above or below the
Dirac points [4]. In addition, graphene also exhibits many
excellent transport characteristics: a high mobility [5], long
spin relaxation length [6], and stable behavior under ambient
conditions. At room temperature, its mobility can be above
104 cm2 V−1 s−1, implying that the mean free path can be as
long as a few hundred nanometers. Because of weak spin–
orbit coupling [7] and a low hyperfine interaction [8], its spin
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relaxation length can reach the order of a micron at room
temperature. Thus, graphene may be an excellent candidate
for microelectronic applications, in particular for spintronic
applications [9].

In general, the charge carriers in graphene are not spin-
polarized. For spintronic applications, people try to inject
a spin-polarized current or induce spin-polarized carriers in
graphene. Recently, many works have focused on this
issue. For example, Haugen et al [10] suggested that spin-
polarized carriers can be realized by growing graphene on
a ferromagnetic (FM) insulator (e.g. EuO). Owing to the
magnetic proximity effect, an exchange split between the spin-
up and spin-down carriers in the graphene is induced, and then
the carriers are spin-polarized. Based on the first-principles
calculations, Son et al [11] predicted that the zigzag graphene
nanoribbon becomes a half metal when an in-plane transverse
electric field is applied. Also, Lin et al [12] demonstrated
that electron–electron correlation in an armchair graphene
nanoribbon can generate flat-band ferromagnetism. On the
experimental side, a large spin injection into graphene has
been realized by connecting it to an FM electrode [6, 13, 14].
Furthermore, several groups [14, 15] have performed nonlocal
magnetoresistance (MR) measurements, in which a net spin
current is brought between the injector and detector.

A well-known application in spintronics is the spin
valve effect [16], in which the resistance of devices can
be changed by manipulating the relative orientation of the
magnetizations. Motivated by the spintronic application with
the novel material, spin-polarized transport through graphene
is currently attracting a great deal of attention [17–23]. Using
the tight-binding model, Brey and Fertig [20] studied the MR
of a FM/graphene/FM junction in the limit of infinite width.
They found that the MR is rather small since the conductivity
is weakly dependent on the relative magnetization orientations
of the FM leads. Ding et al [21] investigated a similar device
with two FM leads by a continuous model. The results
showed that the MR versus the bias exhibits a cusp around zero
bias in absence of an external magnetic field, and oscillating
behavior at a high magnetic field. Based on the first-principles
calculation, Kim and Kim [22] predicted that a graphene-based
spin valve device could have a high MR.

In this paper, we study the conductance and MR of a
graphene-based spin valve. The device consists of a graphene
nanoribbon coupling to two FM leads, as shown in figure 1(a).
Here the width of the device is finite in the order of 10 nm,
i.e. the size effect is considered. In recent experiments [24], a
few 10 nm or sub-10 nm graphene nanoribbons have already
been fabricated successfully. For a finite-width graphene
nanoribbon, the wavevectors along the confined direction are
discrete, and transverse subbands emerge. The characteristics
of the subbands are strongly dependent on the chirality of
the graphene nanoribbon edge [25], e.g. the zigzag edge
or armchair edge. So the conductance and MR should be
strongly dependent on the boundary condition of the graphene
nanoribbon. In addition, we consider that the two FM leads
also have the same hexagonal lattice structure as the graphene.
In other words, the leads are graphene-based FM or called
FM graphene. In the experiment, the FM electrode (e.g. the

Figure 1. (a) The schematic of a graphene-based FM/normal/FM
junction. (b), (c) The conductance G versus the Fermi energy EF for
different magnetizations M at the parallel configuration (θ = 0). The
size of the central graphene is N = 50 and L = 10.

cobalt electrode) usually overlaps the graphene through a thin
oxide layer [6, 14]. Because of the magnetic proximity effect
and the Zeeman effect, an exchange split in the graphene
underneath the oxide layer is induced, and its carriers are spin-
polarized. So the graphene covered with the FM electrode has
magnetization. Thus, the spin-polarized charge carriers, driven
by a bias, travel from one FM graphene through the central
normal graphene to another FM graphene.

In the tight-binding model the Landauer–Büttiker formula
and the nonequilibrium Green function method are applied to
calculate the conductance and MR. For the zigzag graphene
ribbon case, we found that when the graphene nanoribbon is
narrow enough, and its separation � between the first subband
and the zeroth subband is larger than the exchange split
energy M , the conductance for the antiparallel magnetization
configuration can almost be zero in a quite large energy
window around the Dirac point. However, for the parallel
configuration the conductance is always larger than e2/h, so
the MR exhibits a plateau with the value 100%. As the
width of the nanoribbon increases, the subband separation �
gradually decreases, and the MR can maintain a value 100%
at the beginning of � > M , then decrease when � < M .
In the presence of disorder, the MR drops slightly, but even
with quite a large disorder it can maintain the value 50%,
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which is still much larger than 10%, the lower limit of the
giant magnetoresistance effect. What is more, for the armchair
graphene nanoribbon case, the MR is always small regardless
of the width of nanoribbon. By comparing two cases of
graphene ribbons with different edges, it is more reasonable
to apply zigzag graphene ribbons to spin valve devices.

The rest of the paper is organized as follows: in section 2,
we describe the model and details of the calculations. In
sections 3 and 4 we will give the numerical results of the
conductance and MR for the zigzag and armchair edge cases,
respectively. Finally, a brief conclusion is presented in
section 5.

2. Model and formulations

We consider a graphene-based spin valve (as shown in
figure 1(a)) which consists of a central normal graphene strip
and two FM graphene ribbons. The total Hamiltonian, H , of
the device can be divided into four terms, H = HC + HL +
HR + HT, where HC describes the central normal graphene
region, HL and HR are the Hamiltonians of the left and right
FM graphene leads, respectively, and HT = HTL + HTR

is the coupling Hamiltonian of the central region to the left
and right leads. In the tight-binding approximation [26], the
Hamiltonians HC, HL, HR, and HT can be written as

HC =
∑

i∈C

εCa†
i σI ai −

∑

〈i j〉(i, j∈C)

(ta†
i σI a j + h.c.),

Hα=L,R =
∑

i∈α

a†
i (εασI +σ ·Mα)ai−

∑

〈i j〉(i, j∈α)

(ta†
i σI a j + h.c.),

HT = −
∑

〈i j〉(i∈C, j∈L,R)

(ta†
i σI a j + h.c.),

where s =↑,↓ represents the spin of electrons; a†
is (ais) creates

(annihilates) an electron with spin s on-site i , and ai = (ai↑
ai↓

)
;

〈i j〉 stands for a nearest-neighbor pair. σ = (σx , σy, σz) are
the Pauli matrices and σI is a 2 × 2 unit matrix. εC, εL,
and εR are the on-site energies (i.e. the energy of the Dirac
point) in the center region, left and right FM leads, respectively,
which can be tuned by the gate voltage. The size of the
center graphene region is described by the width N and length
L. In figure 1(a), a zigzag edge graphene nanoribbon with
N = 4 and L = 9 is shown. The terms, including the factor
t in Hamiltonian, describe nearest-neighbor hopping with a
hopping energy t . ML and MR are the magnetizations of the
left and right FM leads. Here we allow the magnetizations
ML and MR to be along arbitrary directions. Without loss of
generality we assume that the magnetization ML of the left
lead is along the z-axis, then ML = ML(0, 0, 1), and the
magnetization MR of the right lead is along the direction (θ, ϕ)

with MR = MR(sin θ cos ϕ, sin θ sin ϕ, cos θ).
Before performing the calculation, we take a unitary

transformation with ãi = Uai for all sites i in the right FM
lead, where the unitary matrix U is

U =
(

cos(θ/2) e−iϕ sin(θ/2)

eiϕ sin(θ/2) − cos(θ/2)

)
.

Under this unitary transformation, the Hamiltonians HC, HL,
and HTL remain unchanged, and HR and HTR become

HR =
∑

i∈R

ã†
i (εRσI + σ · M′

R)ãi −
∑

〈i j〉(i, j∈R)

(t ã†
i σI ã j + h.c.),

HTR = −
∑

〈i j〉(i∈C, j∈R)

(ta†
i U ã j + h.c.),

where M′
R = MR(0, 0, 1). After the unitary transformation,

the z-axis of the spin in the right FM lead is along the direction
of M′

R, and the Hamiltonian HR is diagonal in the spin space.
The current flowing through the device can be calculated

from the Landauer–Büttiker formula [27]

I = (e/h)

∫
dεTLR(ε)[ fL(ε) − fR(ε)],

where fL/R(ε) = 1/{exp[(ε − μL/R)/kB T ] + 1} is
the Dirac–Fermi distribution function of the left and
right FM leads and TLR(ε) = Tr[ΓLGrΓRGa] is
the transmission coefficient, with the line-width func-
tion Γα(ε) = i[Σr

α(ε) − Σa
α(ε)] and Green’s functions

Gr(ε) = [Ga(ε)]† = 1/[ε − HC − Σr
L − Σr

R]. Σr
L/R is the re-

tarded self-energy function coupling to the leads, which has
to be calculated numerically by solving the surface Green
function of the leads [28, 29]. After solving the current I ,
the linear conductance G can be obtained straightforwardly,
G = limV →0 dI/dV , with the bias V = μL −μR. At zero tem-
perature G = (e2/h)T (EF). In the numerical calculation, we
take the nearest-neighbor hopping energy t = 1 as the energy
unit and adopt the Dirac point energies εL = εR = εC = 0. The
magnetizations Mα in the left and right FM leads are assumed
to be equal (ML = MR = M), which is usually reasonable
when the two FM leads are made of the same material. The
angle ϕ = 0 because the conductance and MR are independent
of ϕ.

3. The case of the zigzag edge

In this section, we focus on the zigzag edge graphene-
based spin valves. We first investigate the conductance G
on the parallel and antiparallel configurations, and then the
MR and the conductance with arbitrary angles between the
magnetizations ML and MR.

3.1. The conductance for the parallel configuration

Figures 1(b) and (c) show the conductance G versus the Fermi
energy EF for different magnetizations, M , of the parallel
configuration (i.e. θ = 0). When the magnetization M = 0,
the two leads are normal and the whole device is a flawless
graphene ribbon. In this case, the conductance G exhibits
a plateau structure with plateau values at 2, 6, 10, . . . (in the
unit e2/h), i.e. at the half-integer position, g(n + 1/2)e2/h
with the degeneracy g = 4, due to the transverse subband
structures. The step height of the value 4e2/h results from spin
and valley degeneracy and the plateaus at half-integer values
originates from the fact that the zeroth subband has the only
spin degeneracy.
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Figure 2. The energy band structures of the left lead, center region,
and right lead in the case of a zigzag edge in the parallel
configuration (θ = 0). (a) 0 < M < �/2 and (b) �/2 < M < �.

When the two leads are FM with a non-zero M , the
conductance G does not have the perfect plateau structure, but
still obeys the electron–hole symmetry, G(−EF) = G(EF)

(see figures 1(b) and (c)). In the following, we discuss the
conductance G in detail for 0 < M < �/2 and �/2 < M <

�, where � is the energy splitting between the first subband
and the zeroth subband (see figure 2) and � ≈ 0.045 for
N = 50. For 0 < M < �/2, the curve of G versus EF

can be partitioned into several regions: (0, M), (M,� − M),
(� − M,� + M), etc. In the first interval, EF ∈ (0, M),
the conductance G oscillates with a value between e2/h and
2e2/h. In the interval, EF ∈ (M,� − M), the conductance G
is exactly equal to 2e2/h and forms a plateau. In the interval,
EF ∈ (� − M,� + M), the conductance approaches the value
4e2/h. With a further rise in EF, the conductance becomes
larger.

In order to understand the above results, we present the
energy bands of the left lead, center region, and right lead
in figure 2, and the band index is specified in each region.
Owing to the symmetry of bands, only part of the moment
k > 0 is shown. The 0th and −1th subbands in the
FM leads are nondegenerate, but other subbands are two-
fold degenerated. Because of the parity conservation of the
transverse wavefunction, the electrons belonging to the even
(odd) parity subbands in the left FM lead are transported only
into the even (odd) parity subbands of the right lead, which
was demonstrated in a very recent letter [30] and it is termed
the band-selective phenomenon. For convenience, we use the
symbol (i, j, k) to denote the channel through which electrons
are transported from the i th band of the left lead, through the
j th band in the center region, to the kth band of the right lead,
and Ti, j,k to denote its transmission coefficient.

With the aid of the energy bands in figure 2(a), we now
explain the conductance G in figure 1(b) with 0 < M < �/2.
(i) When EF ∈ (0, M), the channel (0, 0, 0) is open for spin-
up electrons, and T0,0,0 is exactly 1 due to lack of scattering.
For spin-down electrons, the channel (−1, 0,−1) is open, in
which the parity of the transverse wavefunction in the center

Figure 3. The conductance G versus the Fermi energy EF for
different M in the antiparallel configuration (θ = π). The size of
system is the same as figure 1(b).

region mismatches with that of the left and right lead, so that
scattering exists and 0 < T−1,0,−1 < 1. As a result, the
total conductance oscillates with a value between e2/h and
2e2/h. (ii) When EF ∈ (M,� − M), the channels (0, 0, 0)

are available for both the spin-up and spin-down electrons, and
the conductance G exactly equals 2e2/h. (iii) Further, when
EF increases to the range of (� − M, � + M), besides the
channels (0, 0, 0) of both spin electrons, the channels (1, j, 1)

( j = 0, 1) of the spin-up take part in the transport, which make
the conductance G approximately 4e2/h.

Now we discuss the conductance in the case of �/2 <

M < �. Figure 1(c) shows the conductance, and
the corresponding band structure is shown in figure 2(b).
Apparently, the conductance G varies in a more complex way
than that in 0 < M < �/2 (see figures 1(b) and (c)). Here
we are mainly concerned with two energy regions: EF ∈
(0,� − M) and (� − M, M). When EF ∈ (0,� − M)

the transport involves the channel (0, 0, 0) of spin-up electrons
and the channel (−1, 0,−1) of spin-down electrons. So the
conductance G oscillates between e2/h and 2e2/h, which is
identical with case (i) when 0 < M < �/2. For EF ∈ (� −
M, M), another channel (1, 0, 1) of spin-up electrons joins into
the transport, so the conductance is obviously enhanced and
the value lies between 2e2/h and 4e2/h. Further, for EF >

M , because more channels will be opened, the conductance
usually becomes larger than 4e2/h.

3.2. The conductance for the antiparallel configuration

Next, we study the antiparallel configuration with θ = π . The
results for the conductance G are shown in figure 3. One
of the main characteristics is a zero conductance when EF is
near the Dirac point (i.e. EF = 0). This is very different
from the parallel configuration, in which G is always larger
than e2/h. Let us analyze the conductance in detail in the
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Figure 4. The energy band structures of the left lead, center region,
and right lead for the zigzag edge case in the antiparallel
configuration (θ = π). (a) 0 < M < �/2 and (b) �/2 < M < �.

following. Because G(−EF) = G(EF), we only discuss the
case EF > 0. (i) For 0 < M < �/2, the conductance
G is exactly zero in the range EF ∈ (0, M) and becomes
2e2/h when EF ∈ (M, M + �). (ii) For �/2 < M < �,
G = 0 when EF ∈ (0,� − M), while G is between 0 and
2e2/h when EF ∈ (� − M, M) and is exactly 2e2/h when
EF ∈ (M, M +�). (iii) If M increases sequentially (M > �),
around the Dirac point a small salient appears instead of the
zero conductance range.

These characteristics of conductance can be understood
well from their band structures in figure 4. From the band
structures of the antiparallel configuration the spin-up and spin-
down electrons contribute equally to the conductance, and we
only discuss the spin-up electrons in the following. (i) We
discuss the case of 0 < M < �/2, and the corresponding
energy band structure is illustrated in figure 4(a). When EF ∈
(0, M), only the channel (0, 0,−1) is involved, in which the
band is even parity in the left lead and is odd in the right
lead. Because of the band-selective rule, its transmission
coefficient T0,0,−1 = 0, and G = 0. On the other hand,
when EF ∈ (M,� + M), the channel (0, 0, 0) is available,
so that G = 2e2/h. On further increasing EF, more channels
are opened and the conductance is larger. (ii) We analyze the
case of �/2 < M < �, and the corresponding energy band
structure is illustrated in figure 4(b). For EF ∈ (0,� − M),
only the channel (0, 0,−1) is involved. So G = 0 because
of the band-selective rule. When EF ∈ (� − M, M), the
channel (1, 0,−1) is opened. The parity of the transverse
wavefunction in the center region is different from those in the
left and right leads. The incident electrons may be scattered
and T1,0,−1 lies between 0 and 1. As a result, 0 < G < 2e2/h,
including the spin-down electrons. On increasing EF to the
range (M,� + M), the channel (0, 0, 0) is opened, and the
total conductance G = 2e2/h. Notice that when EF is close
to, but less than, � + M , although the extra channel (2, 0, 0)

is involved, the conductance G is still 2e2/h because only the
subband 0 is available in the right FM lead.

Figure 5. MR as a function of EF for different magnetizations M .
The size of the central region is N = 50 and L = 10.

3.3. The magnetoresistance

After obtaining the conductances GP and GA of parallel
and antiparallel configurations, the MR, defined as MR =
(GP − GA)/GP, can be obtained straightforwardly. Figure 5
shows the MR versus the Fermi energy EF for different
magnetizations M. Here the MR can be very large, as much
as 100%, when EF is close to the Dirac point. In particular,
a plateau with the value 100% is clearly exhibited in the
curve of MR-EF. This 100% MR plateau emerges due to
the zero conductance in the antiparallel configuration (see
figure 3). It is noticeable that the conductance for the parallel
configuration is still quite large (>e2/h). This means that
the present device not only has a large MR but also has a
large variance of the conductance between the parallel and
antiparallel configurations. Thus it is a good candidate for
the spin valve devices. The width of the 100% MR plateau is
determined by the magnetization M and the energy splitting �
between the subbands. When 0 < M < �/2, its width is 2M ,
so it increases with the enhancement of M . At M = �/2,
the plateau width reaches its widest value �. On further
increasing M , the plateau width becomes narrow and it is
equal to 2(� − M) when �/2 < M < �. At M = �,
the 100% MR plateau disappears. When M > � a valley,
instead of the plateau, appears in the vicinity of EF = 0.
Therefore for a larger �, it is more favorable for the formation
of the 100% MR plateau. In experiment, graphene nanoribbons
with widths of several-tens or sub-ten nanometers have been
fabricated [24]. Taking a 20 nm wide ribbon as an example,
its � is about 0.12 eV, which is usually much larger than M .
In addition, when EF deviates far from 0 (i.e. the region of the
100% plateau), the MR may be quite small (see figure 5). This
implies that the capability of the graphene-base spin valve is
optimal when it works near the Dirac point.

We study the influence of the size of the ribbon between
two FM leads on the MR. Figure 6(a) (figure 6(b)) shows the

5
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Figure 6. (a) The MR versus EF for different widths N with length
L = 10 and (b) MR versus EF for different lengths L with width
N = 50. The magnetization M = 0.01.

MR as a function of EF for different widths N (lengths L) and
a fixed L (N). With an increase of width N , the separation
� of the transverse subbands decreases monotonously (with
� ≈ 3π t/4N) [31]. Initially, the 100% MR plateau is not
affected until �/2 < M (see the curve with N = 30, 50, and
100 in figure 6(a)). Then on further increasing N , the 100%
MR plateau becomes narrow (see the curve with N = 150 in
figure 6(a)), and disappears at the width N with its � = M .
Finally, when the ribbon is very wide with its � � M , the
MR is very small regardless of the other parameters. This
result is the same as from recent work studying the infinite
wide graphene spin valve device [20]. Therefore, it is favorable
to select narrower nanoribbons to fabricate spin valves. On the
other hand, a length change of the central region does not affect
the 100% MR plateau at all (see figure 6(b)). Only the shapes
of some subplateaus are slightly changed.

In the above discussion, we assumed that the Dirac point
energy εC of the central region is equal to εα of the left and
right leads. If εC departs from εα , the conductance G in the
antiparallel configuration is still zero when EF ∈ (−M, M)

and 0 < M < �/2, because the parity of the transverse
wavefunctions in the left and right FM leads can not match
each other. However, the conductance G for the parallel
configuration is very large (>e2/h). So the 100% MR plateau
is not affected by εC slightly departing from εα .

How is the 100% MR plateau affected by the disorder?
Here, we consider the Anderson disorder which exists only
in the central graphene region. The on-site energy εC in the
central region Hamiltonian becomes εC + wi , where wi is
uniformly distributed in the range of [−W/2, W/2]. Figure 7
shows the MR versus EF at different disorder strength W , in
which every MR curve for W �= 0 is averaged over up to 1000
random configurations. The MR is reduced by the disorder, but

Figure 7. MR versus EF for different disorder strength W . The
parameters are M = 0.02, N = 50 and L = 10.

Figure 8. The conductance G versus the angle θ for different
magnetization M and different Fermi energy EF. The size of the
central region is N = 50 and L = 10.

the plateau shape still holds and the value is about 40%–50%,
even with quite strong disorder.

3.4. The conductance for the arbitrary angle θ of the left and
right magnetizations

Now we analyze θ dependence of the conductance. In figure 8,
the conductance G as a function of the angle θ is plotted with a
combination of M and EF. Here the shape of the curves G-θ is
approximatively a cosine function regardless of the parameters
M and EF. At EF = 0 (i.e. at the center of the 100% MR
plateau), the change quantity of the conductance G for the
angle θ from 0 to π is about 2e2/h, which is quite large. About
at θ = 2, the derivative dG/dθ reaches an extreme value, but
in the region of 0 < θ < 1, the derivative dG/dθ is quite
small. On the other hand, when EF deviates from the 100%
MR plateau, the variation of the conductance G is also about
2e2/h, or even larger for some values of EF (see the curves
for EF = 0.05 in figure 8), although the MR is about 50%
there. However, in the region of MR = 0, the conductance G
is independent of the angle θ (not shown here).
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Figure 9. Left panel: MR as a function of EF in the case of the
armchair edge with the width N = 41 and the length L = 40 atomic
layers in the central region. Right panel: the energy band structure of
an ideal armchair edge graphene ribbon with the width N = 41.

4. The case of the armchair edge

In this section, we investigate the MR in the armchair edge
FM/normal/FM junction. In the case of the armchair edge,
there are two types of energy band structure [25]. If the number
of transverse atomic layers N is equal to 3m or 3m + 1 (where
m is an integer), an energy gap appears. This gap can be
quite large for a narrow graphene nanoribbon. When the Fermi
energy EF is in the gap, the conductance is always very small,
regardless of the parallel or antiparallel configurations. So it is
not interesting even if its MR is very large. For N = 3m+2, the
graphene nanoribbon is metallic and its conductance is large.

Figure 9 shows the MR as a function of Fermi energy EF

for the metallic armchair edge FM/graphene/FM junction with
� ≈ 0.13t for N = 41. The conductance approaches 2e2/h
for both the parallel and antiparallel configurations at a large
range of EF around zero energy. As a result the MR is very
small regardless of M > � and M < �. On the other hand,
when EF is far away from 0 (e.g. EF > �), the MR can be
over 50% in some regions of EF. Anyway, the property of
MR of the zigzag edge ribbon is much better than that of the
armchair edge ribbon. So it is more favorable to fabricate spin
valve devices by using the zigzag edge ribbon. In experiment,
a graphene nanoribbon with a specific parity edge has already
been successfully fabricated [24].

5. Conclusions

In summary, we have studied the electronic transport
and magnetoresistance (MR) in graphene-based ferromag-
netic/normal/ferromagnetic junctions where the finite width
and an arbitrary relative orientation between the lead magne-
tizations are taken into account. For the zigzag edge case, the
conductance for the parallel configuration is always larger than
e2/h under any parameter condition, but for the antiparallel
configuration the conductance is exactly zero when the Fermi
energy is near to the Dirac point, due to the band-selective rule.
This leads to a 100% MR plateau. The 100% MR plateau is al-
most unaffected by the length of the central graphene region.
With an increase in the width of the ribbon, the 100% MR
plateau is initially kept stable, but becomes smeared in the wide

ribbon limit. In the presence of disorder, the MR is slightly
suppressed, but can still keep the plateau shape with the value
about 50% even with quite large disorder strengths. When the
orientation between the magnetizations of the two ferromag-
netic leads is arbitrary, the conductance versus the relative an-
gle θ is similar to a cosine formation. What is more, for the
armchair edge case, the MR is relatively small. Therefore, it is
more favorable to fabricate graphene-based spin valve devices
by using zigzag edge graphene ribbons.
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